Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 89(3): 1550-63, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25392225

RESUMO

UNLABELLED: The envelope of influenza A viruses contains two large antigens, hemagglutinin (HA) and neuraminidase (NA). Conventional influenza virus vaccines induce neutralizing antibodies that are predominantly directed to the HA globular head, a domain that is subject to extensive antigenic drift. Antibodies directed to NA are induced at much lower levels, probably as a consequence of the immunodominance of the HA antigen. Although antibodies to NA may affect virus release by inhibiting the sialidase function of the glycoprotein, the antigen has been largely neglected in past vaccine design. In this study, we characterized the protective properties of monospecific immune sera that were generated by vaccination with recombinant RNA replicon particles encoding NA. These immune sera inhibited hemagglutination in an NA subtype-specific and HA subtype-independent manner and interfered with infection of MDCK cells. In addition, they inhibited the sialidase activities of various influenza viruses of the same and even different NA subtypes. With this, the anti-NA immune sera inhibited the spread of H5N1 highly pathogenic avian influenza virus and HA/NA-pseudotyped viruses in MDCK cells in a concentration-dependent manner. When chickens were immunized with NA recombinant replicon particles and subsequently infected with low-pathogenic avian influenza virus, inflammatory serum markers were significantly reduced and virus shedding was limited or eliminated. These findings suggest that NA antibodies can inhibit virus dissemination by interfering with both virus attachment and egress. Our results underline the potential of high-quality NA antibodies for controlling influenza virus replication and place emphasis on NA as a vaccine antigen. IMPORTANCE: The neuraminidase of influenza A viruses is a sialidase that acts as a receptor-destroying enzyme facilitating the release of progeny virus from infected cells. Here, we demonstrate that monospecific anti-NA immune sera inhibited not only sialidase activity, but also influenza virus hemagglutination and infection of MDCK cells, suggesting that NA antibodies can interfere with virus attachment. Inhibition of both processes, virus release and virus binding, may explain why NA antibodies efficiently blocked virus dissemination in vitro and in vivo. Anti-NA immune sera showed broader reactivity than anti-HA sera in hemagglutination inhibition tests and demonstrated cross-subtype activity in sialidase inhibition tests. These remarkable features of NA antibodies highlight the importance of the NA antigen for the development of next-generation influenza virus vaccines.


Assuntos
Soros Imunes/imunologia , Vírus da Influenza A/imunologia , Neuraminidase/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Galinhas , Cães , Influenza Aviária/prevenção & controle , Neuraminidase/administração & dosagem , Suínos , Proteínas Virais/administração & dosagem , Internalização do Vírus , Liberação de Vírus/imunologia , Eliminação de Partículas Virais
2.
J Biol Chem ; 286(40): 34743-51, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21859714

RESUMO

Mx proteins are a family of large GTPases that are induced exclusively by interferon-α/ß and have a broad antiviral activity against several viruses, including influenza A virus (IAV). Although the antiviral activities of mouse Mx1 and human MxA have been studied extensively, the molecular mechanism of action remains largely unsolved. Because no direct interaction between Mx proteins and IAV proteins or RNA had been demonstrated so far, we addressed the question of whether Mx protein would interact with cellular proteins required for efficient replication of IAV. Immunoprecipitation of MxA revealed its association with two closely related RNA helicases, UAP56 and URH49. UAP56 and its paralog URH49 play an important role in IAV replication and are involved in nuclear export of IAV mRNAs and prevention of dsRNA accumulation in infected cells. In vitro binding assays with purified recombinant proteins revealed that MxA formed a direct complex with the RNA helicases. In addition, recombinant mouse Mx1 was also able to bind to UAP56 or URH49. Furthermore, the complex formation between cytoplasmic MxA and UAP56 or URH49 occurred in the perinuclear region, whereas nuclear Mx1 interacted with UAP56 or URH49 in distinct dots in the nucleus. Taken together, our data reveal that Mx proteins exerting antiviral activity can directly bind to the two cellular DExD/H box RNA helicases UAP56 and URH49. Moreover, the observed subcellular localization of the Mx-RNA helicase complexes coincides with the subcellular localization, where human MxA and mouse Mx1 proteins act antivirally. On the basis of these data, we propose that Mx proteins exert their antiviral activity against IAV by interfering with the function of the RNA helicases UAP56 and URH49.


Assuntos
Antivirais/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Interferons/metabolismo , RNA Helicases/metabolismo , Células 3T3 , Animais , Antivirais/farmacologia , Citoplasma/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Vírus da Influenza A/metabolismo , Camundongos , Proteínas de Resistência a Myxovirus , Ligação Proteica , RNA Helicases/química
3.
J Virol ; 85(17): 8646-55, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21680511

RESUMO

The cellular DEAD box RNA helicase UAP56 plays a pivotal role in the efficient transcription/replication of influenza A virus. UAP56 is recruited by the nucleoprotein (NP) of influenza A viruses, and recent data revealed that the RNA helicase is required for the nuclear export of a subset of spliced and unspliced viral mRNAs. The fact that influenza viruses do not produce detectable amounts of double-stranded RNA (dsRNA) intermediates during transcription/replication suggests the involvement of cellular RNA helicases. Hence, we examined whether the RNA-unwinding activity of UAP56 or its paralog URH49 plays a role in preventing the accumulation of dsRNA during infection. First, our data showed that not only UAP56 but also its paralog URH49 can interact with NPs of avian and human influenza A viruses. The small interfering RNA (siRNA)-mediated depletion of either RNA helicase reduced the transport of M1 and hemagglutinin (HA) mRNAs and, to a lesser extent, NP and NS1 mRNAs into the cytoplasm. Moreover, we found that virus infection of UAP56-depleted cells leads to the rapid accumulation of dsRNA in the perinuclear region. In parallel, we observed a robust virus-mediated activation of dsRNA-dependent protein kinase R (PKR), indicating that the cellular RNA helicase UAP56 may be recruited by influenza virus to prevent dsRNA formation. The accumulation of dsRNA was blocked when actinomycin D or cycloheximide was used to inhibit viral transcription/replication or translation, respectively. In summary, we demonstrate that UAP56 is utilized by influenza A viruses to prevent the formation of dsRNA and, hence, the activation of the innate immune response.


Assuntos
RNA Helicases DEAD-box/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Replicação Viral , Humanos , Proteínas do Nucleocapsídeo , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Proteínas do Core Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...